COMMONWEALTH OF VIRGINIA DEPARTMENT OF HEALTH #### DIVISION OF RADIOLOGICAL HEALTH 109 Governor Street, Room 730 Richmond, Virginia 23218-2448 Office (804) 864-8150 Fax (804) 864-8165 # ENVIRONMENTAL RADIATION PROGRAM # FIRST QUARTER 2013 REPORT Data is entered on a quarterly basis throughout the year, not all sample data available at this time #### **ACKNOWLEDGEMENTS** We would like to acknowledge the following organizations and agencies that contributed to the environmental surveillance program: - Babcock & Wilcox - Department of Agriculture and Consumer Services Dairy and Food Division - Department of Conservation and Recreation Division of State Parks - Department of Emergency Management Preparedness and Mitigation Division - Department of General Services Division of Consolidated Laboratory Services - Department of Health Division of Shellfish Sanitation - Dominion Virginia Power - Newport News Shipbuilding - Norfolk Naval Shipyard #### **PREFACE** The Division of Radiological Health conducts an extensive environmental monitoring program of radiological conditions around certain fixed nuclear facilities in the Commonwealth of Virginia to provide an independent assessment of each facility's compliance with applicable federal and state regulations. Each of these fixed nuclear facilities has its own routine surveillance program. The objectives of a routine surveillance program include: - a) Providing information useful in assessing the adequacy of protection of the public - b) Meeting requirements of regulatory agencies - c) Verifying radionuclide containment and plant waste management practices - d) Meeting legal liability obligations - e) Providing public assurance and acceptance (NCRP, 1976). In addition to these stated objectives, the DRH has identified other objectives such as; - a) Maintenance of a database of background radionuclide levels and trends to assist with the assessment of other environmental data - b) Identification of radiological releases not associated with the licensed facility - c) Maintenance of equipment and proficiency of capabilities used in emergency preparedness and response activities Part of this work is funded by the Virginia Department of Emergency Management. This report is distributed to the licensee, as well as state and local agencies, which have a direct interest in the results. Single copies of this report are available by contacting: Virginia Department of Health Division of Radiological Health 109 Governor Street, Room 730 Richmond, Virginia 23219 (804) 864-8150 You are invited to submit any comments or questions regarding this report to the Division of Radiological Health. NCRP (2006) National Council on Radiation Protection and Measurements, *Environmental Radiation Measurements* (1976) - Report No. 050, National Council on Radiation Protection and Measurements, Washington. #### **VIRGINIA DEPARTMENT OF HEALTH** #### ENVIRONMENTAL RADIATION SURVEILLANCE DATA ANNUAL REPORT 2013 #### **TABLE OF CONTENTS** | FOREWORD
SAMPLING PROGRAM | -i-
1-3 | |--|---| | SOURCES OF RADIOACTIVITY IN THE ENVIRONMENT | 4-5 | | DATA TABLES: | | | NORTH ANNA and SURRY NUCLEAR POWER STATIONS & | Selected Other Locations | | Air Particulate Ambient Gamma Exposure Fish Milk Gamma & Radiogas in air Silt Surface Water Vegetation | 7-11
12
13
14
15-19
20-22
23-28 | | BABCOCK & WILCOX NUCLEAR OPERATIONS GROUP (form | nerly BWXT) | | Air Particulate
Soil
Surface Water
Vegetation | 31
31
32
32 | | APPENDIX I: LOWER LIMITS OF DETECTION □LLD□ APPENDIX II: SAMPLING LOCATIONS APPENDIX III: EMERGENCY PREPAREDNESS | 33-44
45-49
50-51 | #### **FOREWORD** The Division of Radiological Health conducts an extensive environmental radiological monitoring program around nuclear facilities in the Commonwealth of Virginia to determine compliance with applicable federal and state regulations and guidelines. Sampling locations are primarily located around the two nuclear power stations in the Commonwealth of Virginia. - (1) North Anna Power Station, Louisa County, Virginia - (2) Surry Power Station, Surry County, Virginia Sampling locations are also present at: - (3) Babcock & Wilcox, Lynchburg, Virginia - (4) Newport News Shipbuilding (Formerly Newport News Shipbuilding & Drydock Company) - (5) Norfolk Naval Shipyard, Portsmouth, Virginia Samples are also collected at various control locations. This data can be compared to data for samples collected at plant environs. This provides a comparison between naturally occurring radiation and any radiological deposition resulting from nuclear power plant operation or radioactive fallout. All State samples are analyzed by Consolidated Laboratories of the Commonwealth of Virginia and Virginia Department of Health. All the data are within normal expected levels. This report represents a compilation of all samples collected between January 1, 2013 and March 31, 2013. #### SAMPLING PROGRAM The Division of Radiological Health maintains an environmental surveillance program with primary focus on the environs of the nuclear power facilities in Virginia. The objectives of this radiological monitoring program are: - a) To detect and measure radioactive releases during routine nuclear power plant operation. - b) To detect and measure radioactive releases during abnormal events occurring at nuclear facilities. - c) To measure concentration of radioactive effluents in the environment particularly in human exposure pathways. - d) To provide an independent means of verification of utility release reports. These objectives are achieved through continuous sampling of air and ambient radiation, as well as, periodic sampling of water, milk, vegetation, fish, shellfish, etc. Details on sample locations and frequencies are outlined in Appendix III of this report. A brief description of each sampling medium follows: #### AIR PARTICULATE AND RADIOGAS Stationary air samplers are utilized at the Surry Power Station, the North Anna Power Station, and one control location at Pocahontas State Park. Pumps run approximately 168 hours per week at an average flow rate of 115 cubic feet per hour. All samplers are continuously equipped with a charcoal filter. Air particulate filters are used at every sampling location to measure any radioactive particulates. All stations, except the control station, duplicate utility stations. At BWX Technologies, there is one air sampler located on site. This air pump is equipped with air particulate filters and run approximately 168 hours per week with an average flow rate of 70 cubic feet per hour. Charcoal filters & air particulate filters are analyzed weekly for gamma activity with special emphasis on I-131 retention. Samples obtained quarterly from Babcock & Wilcox undergo gross alpha analysis. #### **FISH** Fish samples are collected semi-annually in Lake Anna, near the North Anna Power Station. Each sample consists of approximately one kilogram of flesh from catfish, sunfish, bass or bluegill. All fish samples are counted for gamma activity with data based on wet weight. #### MILK Raw milk samples are collected quarterly from a dairy near each reactor site. Each sample consists of one gallon of raw milk with no preservatives added. Raw milk is a primary indicator of radioiodine incorporation in the food chain. All milk samples are counted for gamma activity and analyzed quarterly for Strontium-89 & 90 and are also radiochemically separated for I-131. #### SHELLFISH Shellfish is no longer collected as part of the environmental surveillance program around Surry Power Station due to the inability to aquire said samples. #### SILT Silt is collected semi-annually next to the Waste Treatment building at North Anna Power Station. The sample consists of one kilogram of bottom sediment and is an indicator of radioactive deposition in sediment. Silt is collected quarterly at Norfolk Naval Shipyard (NNSY) on the Elizabeth River to ensure that shipyard operations result in minimal radioactive effluents. Silt is also collected quarterly at Newport News Shipbuilding (NNSB) on the James River to ensure that operations result in minimal radioactive deposition. Silt samples are counted for gamma activity and gross beta activity with data based on activity per unit of dry weight. #### SOIL Two soil samples are collected at the Babcock & Wilcox facility. One sample site is located at a ball field on the facility's eastern boundary, and the other is a control location at the Department of Agriculture's Lynchburg Regional Animal Health Laboratory (LRAHL), located 5 miles southwest of the plant site, off Route 460. These samples are collected annually. Samples obtained undergo uranium separation followed by alpha analysis. #### **VEGETATION** Green leafy vegetation is collected from home gardens located near each nuclear power facility. Samples of one kilogram of kale, cabbage, or turnip greens are collected annually at harvest. When leafy vegetation is unavailable, tall grass is collected. These samples would indicate incorporation of radioactivity in edible vegetation. Vegetation is counted for gamma activity with data based on activity per unit wet weight. Two vegetation samples are collected at Babcock & Wilcox. These consist of one kilogram of grass from the ball field at the eastern site boundary and one control location at the Department of Agriculture's Lynchburg Regional Animal Health Laboratory (LRAHL), located 5 miles southwest of the plant site, off Route 460. These samples are collected annually and undergo uranium separation followed by alpha analysis. #### SURFACE WATER Surface water is collected weekly at each nuclear power facility. Three and one half liters (L) samples of station discharge water and upstream controls are collected. These samples provide data
on radioactive effluents. Two surface water samples are collected from the James River at Babcock & Wilcox on an annual basis. One is located approximately 3 miles downstream of the Babcock & Wilcox plant, near the ball field at the eastern site boundary, and the other is at a control location near Six Mile Bridge, which is approximately 1.5 miles upstream. Samples undergo uranium separation followed by alpha counting. Surface water is also collected quarterly on the James River at Newport News Shipbuilding (NNSB) and on the Elizabeth River at the Norfolk Naval Shipyard (NNSY) to ensure that shipyard operations result in minimal radioactive effluents. #### AMBIENT GAMMA EXPOSURE (OSL) Ambient gamma exposure readings are collected using either calcium fluoride or optically stimulated luminescence dosimeters (OSL). There are twelve OSL sample stations surrounding North Anna Power Station and fourteen stations surrounding Surry Power Station. One control OSL station is located at Pocahontas State Park. Several stations at each site duplicate utility sampling stations. The OSL's are processed quarterly using a Micro Star system, by Landauer, by VDH for net exposure during their time in the field, resulting in a millirem/quarter reading. #### Sources of Radioactivity in the Environment Radioactivity from natural sources is found everywhere. Naturally occurring radioactivity comes from the decay of primordial terrestrial sources, such as uranium and thorium. Other sources are continually produced in our upper atmosphere through interactions of atoms with cosmic rays. These naturally occurring sources produce the background levels of radioactivity. In the past century, environmental radiation levels have been influenced by human practices of using or manufacturing radioactive materials. Such practices include the use of radioactive materials in the healing arts, uranium mining and milling operations, nuclear power generation, nuclear weapons manufacturing and testing, and storage and disposal of nuclear weapons. Background radiation levels were most altered by residual fallout from nuclear weapons testing. The United States ceased atmospheric testing following adoption of the 1963 Nuclear Test Ban Treaty. Only long-lived fallout radionuclides remain. #### **Doses to the Public** The primary source of natural radiation dose received by the general public is due to radon exposure (See Figure 1 next page). The average individual receives approximately 230 mrem/year from radon and less than 1 mrem/year from nuclear facilities. Another 81 mrem/year are received from other natural sources and approximately 297 mrem/year from medical procedures. The total average whole body dose nationwide is approximately 620 mrem/year. Inherent in all standards for radiation control is the philosophy of limiting exposure to levels, "AS LOW AS REASONABLY ACHIEVABLE," (ALARA). In practice, this philosophy continues to result in very low average doses to the public from nuclear facilities cited earlier. The monitoring program maintained by the Division of Radiological Health continues to verify compliance to these standards. # FIGURE 1: Sources of Radiation Exposure Nuclear Power Plants, Fallout, Etc. (<1 Millirem) Medical Procedures, X-Ray, CT, Nuclear Medicine Etc. (297 Millirem) Rocks & Soil (28 Millirem) Cosmic (31 Millirem) From Within Human Body (31 Millirem) Consumer Products (12 Millirem) Source: National Council on Radiation Protection & Measurement; Estimated Annual Dose of 620 Millirem for an average person in the U.S.A. ■ RADON and Thoron Exposure (230 Millirem) # COMMONWEALTH OF VIRGINIA DEPARTMENT OF HEALTH #### DIVISION OF RADIOLOGICAL HEALTH 109 Governor Street, Room 730 Richmond, Virginia 23218-2448 Office (804) 864-8150 Fax (804) 864-8165 # North Anna and Surry Nuclear Power Stations & Other Selected Locations #### **AIR PARTICULATE** January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 Location: Surry Power Station – on site | | | İ | Date | | Gross Beta
Activity | | | | |--------|---------|----------|------|---------|------------------------|-----------|-------|--| | Week # | Station | Start | | Stop | ı | Ci/meter: | 3 | | | 1 | A-20 | 12/18/12 | - | 1/2/13 | 0.04 | +/- | 0.005 | | | 2 | A-20 | 1/2/13 | - | 1/8/13 | 0.18 | +/- | 0.02 | | | 3 | A-20 | 1/8/13 | - | 1/15/13 | 0.05 | +/- | 0.01 | | | 4 | A-20 | 1/15/13 | - | 1/22/13 | 0.03 | +/- | 0.01 | | | 5 | A-20 | 1/22/13 | - | 1/29/13 | 0.09 | +/- | 0.01 | | | 6 | A-20 | 1/29/13 | - | 2/5/13 | 0.05 | +/- | 0.01 | | | 7 | A-20 | 2/5/13 | - | 2/12/13 | 0.08 | +/- | 0.01 | | | 8 | A-20 | 2/12/13 | - | 2/19/13 | 0.03 | +/- | 0.005 | | | 9 | A-20 | 2/19/13 | - | 2/25/13 | 0.03 | +/- | 0.004 | | | 10 | A-20 | 2/25/13 | - | 3/5/13 | 0.08 | +/- | 0.01 | | | 11 | A-20 | 3/5/13 | - | 3/12/13 | 0.03 | +/- | 0.004 | | | 12 | A-20 | 3/12/13 | - | 3/19/13 | 0.10 | +/- | 0.013 | | | 13 | A-20 | 3/19/13 | - | 3/25/13 | 0.03 | +/- | 0.01 | | # **AIR PARTICULATE** January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 **Location: Pocahontas State Park** – control / naturally occurring background | | | ı | Date | | | | a | |--------|---------|----------|------|---------|------|-------------------|-------| | Week # | Station | Start | | Stop | ŗ | Activity Ci/meter | 3 | |
1 | A-40 | 12/17/12 | - | 1/2/13 | 0.04 | +/- | 0.01 | | 2 | A-40 | 1/2/13 | - | 1/7/13 | 0.11 | +/- | 0.02 | | 3 | A-40 | 1/7/13 | - | 1/14/13 | 0.05 | +/- | 0.01 | | 4 | A-40 | 1/14/13 | - | 1/22/13 | 0.04 | +/- | 0.01 | | 5 | A-40 | 1/22/13 | - | 1/28/13 | 0.06 | +/- | 0.01 | | 6 | A-40 | 1/28/13 | - | 2/4/13 | 0.05 | +/- | 0.01 | | 7 | A-40 | 2/4/13 | - | 2/11/13 | 0.04 | +/- | 0.01 | | 8 | A-40 | 2/11/13 | - | 2/19/13 | 0.05 | +/- | 0.01 | | 9 | A-40 | 2/19/13 | - | 2/25/13 | 0.04 | +/- | 0.01 | | 10 | A-40 | 2/25/13 | - | 3/4/13 | 0.04 | +/- | 0.01 | | 11 | A-40 | 3/4/13 | - | 3/11/13 | 0.02 | +/- | 0.004 | | 12 | A-40 | 3/11/13 | - | 3/18/13 | 0.03 | +/- | 0.004 | | 13 | A-40 | 3/18/13 | - | 3/25/13 | 0.03 | +/- | 0.004 | # **AIR PARTICULATE** January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 Location: Jamestown State Park & Historical Site | | | | Date | | | | a | |--------|---------|----------|------|---------|------|-----------|-------| | Week # | Station | Start | | Stop | ı | Ci/meter: | 3 | | 1 | A-44 | 12/18/12 | - | 1/2/13 | 0.03 | +/- | 0.004 | | 2 | A-44 | 1/2/13 | - | 1/8/13 | 0.15 | +/- | 0.02 | | 3 | A-44 | 1/8/13 | - | 1/15/13 | 0.05 | +/- | 0.01 | | 4 | A-44 | 1/15/13 | - | 1/22/13 | 0.02 | +/- | 0.004 | | 5 | A-44 | 1/22/13 | - | 1/29/13 | 0.07 | +/- | 0.01 | | 6 | A-44 | 1/29/13 | - | 2/5/13 | 0.04 | +/- | 0.01 | | 7 | A-44 | 2/5/13 | - | 2/12/13 | 0.05 | +/- | 0.01 | | 8 | A-44 | 2/12/13 | - | 2/19/13 | 0.04 | +/- | 0.01 | | 9 | A-44 | 2/19/13 | - | 2/25/13 | 0.03 | +/- | 0.004 | | 10 | A-44 | 2/25/13 | - | 3/5/13 | 0.09 | +/- | 0.01 | | 11 | A-44 | 3/5/13 | - | 3/12/13 | 0.02 | +/- | 0.004 | | 12 | A-44 | 3/12/13 | - | 3/19/13 | 0.04 | +/- | 0.006 | | 13 | A-44 | 3/19/13 | - | 3/25/13 | 0.03 | +/- | 0.004 | #### **AIR PARTICULATE** January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 Location: Louisa County / Bumpass Volunteer Fire Station | Week# | Station | Start | Date | Stop | | Gross Beta
Activity
pCi/meter3 | | |-------|---------|----------|------|---------|------|--------------------------------------|-------| | 1 | A-86 | 12/17/12 | - | 1/2/13 | 0.03 | +/- | 0.004 | | 2 | A-86 | 1/2/13 | - | 1/7/13 | 0.05 | +/- | 0.01 | | 3 | A-86 | 1/7/13 | - | 1/14/13 | 0.05 | +/- | 0.01 | | 4 | A-86 | 1/14/13 | - | 1/22/13 | 0.03 | +/- | 0.004 | | 5 | A-86 | 1/22/13 | - | 1/28/13 | 0.06 | +/- | 0.01 | | 6 | A-86 | 1/28/13 | - | 2/4/13 | 0.05 | +/- | 0.01 | | 7 | A-86 | 2/4/13 | - | 2/11/13 | 0.04 | +/- | 0.01 | | 8 | A-86 | 2/11/13 | - | 2/19/13 | 0.03 | +/- | 0.004 | | 9 | A-86 | 2/19/13 | - | 2/26/13 | 0.09 | +/- | 0.01 | | 10 | A-86 | 2/26/13 | - | 3/4/13 | 0.06 | +/- | 0.01 | | 11 | A-86 | 3/4/13 | - | 3/11/13 | 0.02 | +/- | 0.003 | | 12 | A-86 | 3/11/13 | - | 3/18/13 | 0.03 | +/- | 0.004 | | 13 | A-86 | 3/18/13 | - | 3/26/13 | 0.04 | +/- | 0.01 | # **AIR PARTICULATE** January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 Location: Louisa County / Route 700 | Week # | Station | Start | Date | Stop | | Gross Beta
Activity
Ci/meter: | | |--------|---------|----------|------|---------|------|-------------------------------------|-------| | 1 | A-88 | 12/17/12 | - | 1/2/13 | 0.03 | +/- | 0.004 | | 2 | A-88 | 1/2/13 | - | 1/7/13 | 0.07 | +/- | 0.01 | | 3 | A-88 | 1/7/13 | - | 1/14/13 | 0.04 | +/- | 0.01 | | 4 | A-88 | 1/14/13 | - | 1/22/13 | 0.03 | +/- | 0.005 | | 5 | A-88 | 1/22/13 | - | 1/28/13 | 0.07 | +/- | 0.01 | | 6 | A-88 | 1/28/13 | - | 2/4/13 | 0.05 | +/- | 0.01 | | 7 | A-88 | 2/4/13 | - | 2/11/13 | 0.03 | +/- | 0.01 | | 8 | A-88 | 2/11/13 | - | 2/19/13 | 0.03 | +/- | 0.005 | | 9 | A-88 | 2/19/13 | - | 2/26/13 | 0.10 | +/- | 0.01 | | 10 | A-88 | 2/26/13 | - | 3/4/13 | 0.04 | +/- | 0.01 | | 11 | A-88 | 3/4/13 | - | 3/11/13 | 0.02 | +/- | 0.003 | | 12 | A-88 | 3/11/13 | - | 3/18/13 | 0.03 | +/- | 0.005 | | 13 | A-88 | 3/18/13 | - | 3/26/13 | 0.04 | +/- | 0.01 | # **AMBIENT GAMMA EXPOSURE** January 1, 2013 through March 31, 2013 | Location | Station | Quarter | Net Exposure Rate mR/Std Qtr +/- S.D. | | | | |------------------------------------|-----------|-----------------|---------------------------------------|-----|-------|--| | Surry Power Station | D-20 | 1 st | 27.05 | +/- | 10.40 | | | North Anna Power Station | D-35 | 1 st | 33.17 | +/- | 11.52 | | | Pocahontas State Park | D-40 | 1 st | 42.12 | +/- | 12.98 | | | Surry – Lebanon Baptist Church | D-41 | 1 st | 25.99 | +/- | 10.20 | | | Surry – Lawnes Creek | D-42 | 1 st | 29.04 | +/- | 10.78 | | | Surry – Route 628 | D-43 | 1 st | 25.88 | +/- | 10.17 | | | Jamestown – Historical site | D-44 | 1 st | 28.19 | +/- | 10.62 | | |
Newport News - Lee Hall | D-45 | 1 st | 33.64 | +/- | 11.60 | | | Louisa County - Mineral | D-50 | 1 st | 26.96 | +/- | 10.39 | | | Louisa County – Wares Crossroads | D-51 | 1 st | 27.18 | +/- | 10.43 | | | Louisa County – Good Hope Church | D-52 | 1 st | 30.45 | +/- | 11.04 | | | Spotsylvania Route 614 | D-53 | 1 st | 27.98 | +/- | 10.58 | | | Louisa County – Fred Hall | D-54 | 1 st | 26.69 | +/- | 10.33 | | | Naval Weapons Station – 1 | D-73 | 1 st | 23.31 | +/- | 9.66 | | | Newport News – Fort Eustis | D-76 | 1 st | 28.14 | +/- | 10.61 | | | Williamsburg – Busch Gardens | D-77 | 1 st | 31.68 | +/- | 11.26 | | | Williamsburg – Airport | D-78 | 1 st | 21.66 | +/- | 9.31 | | | Surry – Scotland Wharf | D-79 | 1 st | 23.37 | +/- | 9.66 | | | Surry – Bacon's Castle | D-80 | 1 st | 24.49 | +/- | 9.90 | | | Surry – Alliance | D-81 | 1 st | 26.31 | +/- | 10.26 | | | Surry – Hog Point | D-82 | 1 st | 23.87 | +/- | 9.77 | | | Louisa County – Route 685 | D-84 | 1 st | 26.87 | +/- | 10.37 | | | Spotsylvania – Route 713 | D-85 | 1 st | 26.28 | +/- | 10.25 | | | Louisa County – Bumpass Fire Dept. | D-86 | 1 st | 29.40 | +/- | 10.85 | | | Spotsylvania – Levy | D-87 | 1 st | 29.98 | +/- | 10.95 | | | Louisa County – Route 700 | D-88 | 1 st | 31.59 | +/- | 11.24 | | | Louisa County – Aspen Hill | D-89 | 1 st | 31.99 | +/- | 11.31 | | | Radiological Health | Control 1 | 1 st | 16.24 | +/- | 8.06 | | | Radiological Health | Control 2 | 1 st | 17.05 | +/- | 8.26 | | #### **FISH** January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 | Location | | | | |-------------------------|-----------------|---------|-------------| | Type of fish | Date of Report | Isotope | pCi/gram | | | | Ва | <0.00 | | North Anna | Results Pending | Cs-134 | < 0.00 | | 2 nd Cooling | | Cs-137 | 0.00+/-0.00 | | Lagoon | | Co-58 | < 0.00 | | | | Co-60 | < 0.00 | | F-24 | | I-131 | < 0.00 | | (Catfish) | | Fe-59 | < 0.00 | | | | Mn-54 | < 0.00 | | | | Ru-106 | < 0.00 | | | | Ag-110M | < 0.00 | | | | Zn-65 | < 0.00 | | | | Nb-95 | < 0.00 | *Note: Samples to be analyzed by DCLS in May. #### Milk January 1, 2013 through March 31, 2013 | 1 st Qu | arter Date: Pending | |---|--| | Isotope | Results - pCi/liter | | Ва | <0 | | Cs-134 | <0 | | Cs-137 | <0 | | K-40* | 0+/-0 | | I-131 | 0+/-0 | | Sr-89 | <0.0 | | Sr-90 | 0.0+/-0.0 | | | y - Epps Dairy M-66 | | Surry Count | | | Surry Count | y - Epps Dairy M-66 | | Surry Count | ry - Epps Dairy M-66 marter Date: Pending | | Surry Count 1st Qu | ey - Epps Dairy M-66 Harter Date: Pending Results - pCi/liter | | Surry Count 1st Qu Isotope Ba | ry - Epps Dairy M-66 parter Date: Pending Results - pCi/liter <0 | | Surry Count 1st Qu Isotope Ba Cs-134 | ry - Epps Dairy M-66 marter Date: Pending Results - pCi/liter <0 <0 | | Surry Count 1st Qu Isotope Ba Cs-134 Cs-137 | ry - Epps Dairy M-66 Parter Date: Pending Results - pCi/liter <0 <0 <0 <0 | | Surry Count 1st Qu Isotope Ba Cs-134 Cs-137 K-40* | Results - pCi/liter <0 <0 <0 0+/-0 | ^{*}K-40 data is reported in units of grams/liter. ^{*}Result Pending from DCLS # Gamma & Radiogas in Air January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 **Location:** Surry Power Station | | | Date | | | Cs-134 | Cs-137 | I-131 Activity | Nuclide I- | |-----------|---------|----------|---|---------|---------------------------------|---------------------------------|------------------------|-----------------------------------| | Week
| Station | Start | | Ended | Activity pCi/meter ³ | Activity pCi/meter ³ | pCi/meter ³ | 131 MDA
pCi/meter ³ | | 1 | C-20 | 12/18/12 | - | 1/2/13 | 0.02 | 0.01 | 0.01 | < 0.06 | | 2 | C-20 | 1/2/13 | - | 1/8/13 | < 0 | 0.06 | < 0 | < 0.13 | | 3 | C-20 | 1/8/13 | - | 1/15/13 | 0.49 | 0.03 | < 0 | < 0.12 | | 4 | C-20 | 1/15/13 | - | 1/22/13 | 0.05 | 0.05 | < 0 | < 0.12 | | 5 | C-20 | 1/22/13 | - | 1/29/13 | 0.12 | 0.05 | < 0 | < 0.12 | | 6 | C-20 | 1/29/13 | - | 2/5/13 | 0.12 | 0.04 | 0.06 | < 0.11 | | 7 | C-20 | 2/5/13 | - | 2/12/13 | 0.32 | 0.01 | 0.04 | < 0.13 | | 8 | C-20 | 2/12/13 | - | 2/19/13 | 0.02 | 0.06 | 0.08 | < 0.12 | | 9 | C-20 | 2/19/13 | - | 2/25/13 | 0.02 | 0.07 | < 0 | < 0.14 | | 10 | C-20 | 2/25/13 | - | 3/5/13 | 0.10 | < 0 | < 0 | < 0.10 | | 11 | C-20 | 3/5/13 | - | 3/12/13 | 0.05 | 0.12 | < 0 | < 0.01 | | 12 | C-20 | 3/12/13 | - | 3/19/13 | < 0 | 0.02 | 0.004 | < 0.02 | | 13 | C-20 | 3/19/13 | - | 3/25/13 | < 0 | < 0 | 0.002 | < 0.02 | # Gamma & Radiogas in Air January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 **Location:** Pocahontas State Park | Week | Station | Start | Date | Ended | Cs-134 Activity pCi/meter ³ | Cs-137
Activity
pCi/meter ³ | I-131 Activity pCi/meter ³ | Nuclide I-
131 MDA
pCi/meter ³ | |----------|---------|----------|------|---------|--|--|---------------------------------------|---| | # | C-40 | 12/17/12 | | 1/2/13 | < 0 | 0.06 | < 0 | < 0.06 | | | | | - | | | | | | | 2 | C-40 | 1/2/13 | - | 1/7/13 | < 0 | < 0 | < 0 | < 0.17 | | 3 | C-40 | 1/7/13 | - | 1/14/13 | 0.006 | < 0 | 0.01 | < 0.13 | | 4 | C-40 | 1/14/13 | - | 1/22/13 | 0.05 | 0.08 | 0.07 | < 0.10 | | 5 | C-40 | 1/22/13 | - | 1/28/13 | 0.005 | 0.04 | < 0 | < 0.16 | | 6 | C-40 | 1/28/13 | - | 2/4/13 | 0.03 | 0.001 | < 0 | < 0.14 | | 7 | C-40 | 2/4/13 | - | 2/11/13 | 0.007 | 0.04 | 0.08 | < 0.12 | | 8 | C-40 | 2/11/13 | - | 2/19/13 | 0.51 | 0.02 | 0.009 | < 0.11 | | 9 | C-40 | 2/19/13 | - | 2/25/13 | 0.05 | 0.02 | 0.07 | < 0.16 | | 10 | C-40 | 2/25/13 | - | 3/4/13 | 0.007 | 0.002 | < 0 | < 0.12 | | 11 | C-40 | 3/4/13 | - | 3/11/13 | < 0 | < 0 | 0.003 | < 0.02 | | 12 | C-40 | 3/11/13 | - | 3/18/13 | 0.02 | 0.01 | < 0 | < 0.02 | | 13 | C-40 | 3/18/13 | - | 3/25/13 | 0.03 | < 0 | < 0 | < 0.02 | # Gamma & Radiogas in Air January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 Location: Jamestown State Park - Historical Site | | | | Date | | Cs-134 | Cs-137 | I-131 Activity | Nuclide I- | |------|---------|----------|------|---------|---------------------------------|------------------------------------|------------------------|-----------------------------------| | Week | Station | Start | | Ended | Activity pCi/meter ³ | Activity
pCi/meter ³ | pCi/meter ³ | 131 MDA
pCi/meter ³ | | # | | | | | | • | | • | | 1 | C-44 | 12/18/12 | - | 1/2/13 | 0.14 | < 0 | < 0 | < 0.05 | | 2 | C-44 | 1/2/13 | - | 1/8/13 | 0.12 | < 0 | 0.12 | < 0.15 | | 3 | C-44 | 1/8/13 | - | 1/15/13 | 0.07 | < 0 | 0.02 | < 0.12 | | 4 | C-44 | 1/15/13 | - | 1/22/13 | 0.11 | < 0 | < 0 | < 0.13 | | 5 | C-44 | 1/22/13 | - | 1/29/13 | 0.17 | < 0 | 0.04 | < 0.12 | | 6 | C-44 | 1/29/13 | - | 2/5/13 | 0.06 | 0.05 | 0.10 | < 0.13 | | 7 | C-44 | 2/5/13 | - | 2/12/13 | 0.04 | 0.02 | < 0 | < 0.13 | | 8 | C-44 | 2/12/13 | - | 2/19/13 | 0.09 | 0.10 | 0.03 | < 0.12 | | 9 | C-44 | 2/19/13 | - | 2/25/13 | 0.24 | < 0 | 0.07 | < 0.14 | | 10 | C-44 | 2/25/13 | - | 3/5/13 | 0.21 | < 0 | < 0 | < 0.12 | | 11 | C-44 | 3/5/13 | - | 3/12/13 | 0.01 | 0.005 | < 0 | < 0.01 | | 12 | C-44 | 3/12/13 | - | 3/19/13 | 0.01 | 0.01 | 0.002 | < 0.02 | | 13 | C-44 | 3/19/13 | - | 3/25/13 | 0.07 | 0.009 | 0.0006 | < 0.02 | # Gamma & Radiogas in Air January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 **Location:** Bumpass Volunteer Fire Department | Week
| Station | Start | Date | Ended | Cs-134
Activity
pCi/meter ³ | Cs-137 Activity pCi/meter ³ | I-131 Activity pCi/meter ³ | Nuclide I-
131 MDA
pCi/meter ³ | |-----------|---------|----------|------|---------|--|--|---------------------------------------|---| | 1 | C-86 | 12/17/12 | - | 1/2/13 | 0.05 | 0.01 | < 0 | < 0.06 | | 2 | C-86 | 1/2/13 | - | 1/7/13 | 0.13 | 0.03 | 0.07 | < 0.17 | | 3 | C-86 | 1/7/13 | - | 1/14/13 | 0.07 | < 0 | 0.05 | < 0.14 | | 4 | C-86 | 1/14/13 | - | 1/22/13 | 0.10 | 0.05 | 0.04 | < 0.11 | | 5 | C-86 | 1/22/13 | - | 1/28/13 | < 0 | 0.02 | 0.04 | < 0.14 | | 6 | C-86 | 1/28/13 | - | 2/4/13 | < 0 | 0.10 | < 0 | < 0.13 | | 7 | C-86 | 2/4/13 | - | 2/11/13 | 0.06 | 0.02 | < 0 | < 0.12 | | 8 | C-86 | 2/11/13 | - | 2/19/13 | 0.007 | 0.11 | 0.0002 | < 0.11 | | 9 | C-86 | 2/19/13 | - | 2/26/13 | 0.10 | < 0 | 0.07 | < 0.12 | | 10 | C-86 | 2/26/13 | - | 3/4/13 | 0.19 | 0.10 | 0.02 | < 0.15 | | 11 | C-86 | 3/4/13 | - | 3/11/13 | 0.006 | 0.0006 | < 0 | < 0.01 | | 12 | C-86 | 3/11/13 | - | 3/18/13 | < 0 | 0.005 | 0.004 | < 0.02 | | 13 | C-86 | 3/18/13 | - | 3/26/13 | 0.02 | 0.009 | < 0 | < 0.02 | # Gamma & Radiogas in Air January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 Location: Louisa County / Route 700 | | | Date | | Cs-134 | Cs-137 | I-131 Activity | Nuclide I- | | |-----------|---------|----------|---|---------|---------------------------------|---------------------------------|------------------------|-----------------------------------| | Week
| Station | Start | | Ended | Activity pCi/meter ³ | Activity pCi/meter ³ | pCi/meter ³ | 131 MDA
pCi/meter ³ | | 1 | C-88 | 12/17/12 | - | 1/2/13 | 0.04 | 0.04 | < 0 | < 0.06 | | 2 | C-88 | 1/2/13 | - | 1/7/13 | 0.04 | 0.11 | 0.05 | < 0.20 | | 3 | C-88 | 1/7/13 | - | 1/14/13 | 0.17 | 0.05 | < 0 | < 0.13 | | 4 | C-88 | 1/14/13 | - | 1/22/13 | 0.04 | 0.02 | < 0 | < 0.12 | | 5 | C-88 | 1/22/13 | - | 1/28/13 | 0.13 | 0.05 | 0.02 | < 0.16 | | 6 | C-88 | 1/28/13 | - | 2/4/13 | 0.10 | 0.06 | < 0 | < 0.13 | | 7 | C-88 | 2/4/13 | - | 2/11/13 | 0.06 | 0.03 | 0.02 | < 0.13 | | 8 | C-88 | 2/11/13 | - | 2/19/13 | 0.004 | < 0 | < 0 | < 0.11 | | 9 | C-88 | 2/19/13 | - | 2/26/13 | 0.02 | 0.06 | < 0 | < 0.13 | | 10 | C-88 | 2/26/13 | - | 3/4/13 | 0.14 | < 0 | < 0 | < 0.15 | | 11 | C-88 | 3/4/13 | - |
3/11/13 | 0.006 | 0.01 | < 0 | < 0.02 | | 12 | C-88 | 3/11/13 | - | 3/18/13 | 0.05 | < 0 | 0.003 | < 0.02 | | 13 | C-88 | 3/18/13 | - | 3/26/13 | 0.03 | 0.005 | < 0 | < 0.02 | # Silt January 1, 2013 through March 31, 2013 | Location | Date collected | Gross Beta pCi/gram of Silt | |--|-----------------|-----------------------------| | James River
Pier 1
Newport News Shipyard
S-15A | Results Pending | 0 +/- 0 | | James River
Shipway 11
Newport News Shipyard
S-16 | Results Pending | 0 +/- 0 | ^{*}Result Pending from DCLS January 1, 2013 through March 31, 2013 | | | | | | - Dry Doo
hipyard | | | | |-----------------|--------------------------------------|--------|-------------|------------|------------------------------|-------------------------------|---------------|--| | Quarter | Date collected | Gamn | na Activity | – pCi/grar | Gross Beta
pCi/gram (DRY) | Gross Alpha
pCi/gram (DRY) | | | | | | Cs-134 | Cs-137 | Co-58 | C0-60 | poligiam (Bit1) | pongram (BRT) | | | 1 st | Results
Pending | <0.00 | 0.00 | <0.0 | <0.00 | 0+/-0 | 0+/-0 | | | | | | | | - Dry Doo
hipyard | | | | | Quarter | Date Gamma Activity – pCi/gram (wet) | | | | Gross Beta
pCi/gram (DRY) | Gross Alpha
pCi/gram (DRY) | | | | | | Cs-134 | Cs-137 | Co-58 | C0-60 | | | | | 1 st | Results
Pending | <0.00 | 0.00 | <0.0 | <0.00 | 0+/-0 | 0+/-0 | | | | | | | | – Wet sli
hipyard | • | | | | Quarter | Date collected | Gamm | na Activity | – pCi/grar | Gross Beta
pCi/gram (DRY) | Gross Alpha
pCi/gram (DRY) | | | | | | Cs-134 | Cs-137 | Co-58 | C0-60 | , | , | | | 1 st | Results
Pending | <0.00 | 0.00 | <0.0 | <0.00 | 0+/-0 | 0+/-0 | | ^{*}Result Pending from DCLS #### Silt January 1, 2013 through March 31, 2013 | Location | Date collected | Distance & Direction | | Activity pCi/gram (dry weight) | | |---|----------------|----------------------|--------|--------------------------------|-------| | | | | Cs-134 | Cs-137 | Co-60 | | James River
Surry Power Station
Discharge Canal
S-17 | * | 0.5 miles
NNW | * | * | * | | North Anna Power
Waste Treatment
Shoreline Soil
S-24 | 4/9/2013 | 1.1 mile
SSE | <0.01 | 0.01+/-0.01 | <0.01 | ^{*}Result Pending from DCLS *Location was discontinued #### **SURFACE WATER** January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 | James River – Pier | 1 | |------------------------------|-------| | Newport News Shipyard | W-15A | | Qtr | Date collected | | Gross Beta | | | | | | |-----------------|----------------|--------|------------|-------|-------|-------|-----------|--------------| | | Concolcu | Ba-140 | Cs-137 | I-131 | Mn-54 | Zn-65 | Zr95/Nb95 | | | 1 st | 3/26/13 | <5 | <3 | <5 | <3 | <7 | <5 | 140.6+/-40.6 | # James River – Shipway #11 Newport News Shipyard W-16 | Qtr | Date collected | | Gross Beta | | | | | | |-----------------|----------------|--------|------------|-------|-------|-------|-----------|--------------| | | conected | Ba-140 | Cs-137 | I-131 | Mn-54 | Zn-65 | Zr95/Nb95 | | | 1 st | 3/21/13 | <5 | <3 | <5 | <3 | <7 | <6 | 121.9+/-38.4 | N/A = not collected #### **SURFACE WATER** January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 | Qtr | Qtr Date Gamma Activity – pCi/liter collected | | | | | | | Gross
Beta | Gross
Alpha | |-----------------|---|------------|------------|-------|-----------|-------|-----------|------------------|----------------| | | | Ba-
140 | Cs-
137 | I-131 | Mn-
54 | Zn-65 | Zr95/Nb95 | | | | 1 st | 3/21/13 | <9 | <5 | <14 | <5 | <11 | <10 | 156.8+/-
42.5 | 0.0+/-51.5 | #### Elizabeth River – Wet Slip #1 Norfolk Naval Shipyard W-38 | Qtr | Date collected | | G | amma Ao | Gross
Beta | Gross
Alpha | | | | |-----------------|----------------|------------|------------|---------|---------------|----------------|-----------|------------------|------------| | | | Ba-
140 | Cs-
137 | I-131 | Mn-
54 | Zn-65 | Zr95/Nb95 | | | | 1 st | 3/21/13 | <7 | <5 | <10 | <5 | <11 | <9 | 118.9+/-
39.3 | 0.0+/-56.7 | #### Elizabeth River – Dry Dock #8 Norfolk Naval Shipyard W-39 | Qtr | Date
collected | | G | amma Ac | Gross
Beta | Gross
Alpha | | | | |-----------------|-------------------|------------|------------|---------|---------------|----------------|-----------|------------------|------------| | | | Ba-
140 | Cs-
137 | I-131 | Mn-
54 | Zn-65 | Zr95/Nb95 | Dota | | | 1 st | 3/21/13 | <7 | <5 | <9 | <5 | <11 | <9 | 161.1+/-
42.2 | 0.0+/-54.2 | N/A = not collected GB = GROSS BETA (pCi/L) GA= GROSS ALPHA (pCi/L) #### **SURFACE WATER** January 1, 2013 through March 31, 2013 # Surry Power Station – Discharge Canal - W-19 Gamma Activity – pCi/liter | Date | Ba-
140 | Cs-
134 | Cs-
137 | Co-
58 | Co-
60 | I-
131 | Mn-
54 | Zn-
65 | Zr/N
b 95 | Gros
s
Beta | +/- | BS | H3
MDA | H3
Activity | |-------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|--------------|-------------------|------|----|-----------|----------------| | D
1/2/13 | <17 | <6 | <6 | <6 | <5 | <38 | <5 | <13 | <12 | 114.6 | 38.6 | | | | | 1/2/13 | <50 | <14 | <15 | <13 | <14 | <15 | <14 | <31 | <23 | | | | | 225+/-30 | | 1/8/13 | <49 | <14 | <15 | <14 | <12 | <15 | <14 | <31 | <22 | | | | | 601+/-52 | | 1/15/13 | <50 | <14 | <16 | <15 | <14 | <15 | <14 | <38 | <24 | | | | | 976+/-67 | | 1/22/13 | <46 | <14 | <14 | <12 | <12 | <15 | <13 | <32 | <21 | | | | | 1126+/-67 | | 1/29/13 | <48 | <13 | <15 | <13 | <14 | <16 | <14 | <29 | <22 | | | | | 1577+/-85 | | 2/5/13 | <48 | <13 | <15 | <14 | <15 | <15 | <13 | <31 | <24 | | | | | 526+/-43 | | 2/12/13 | <44 | <14 | <14 | <12 | <14 | <14 | <12 | <33 | <25 | | | | | 3679+/-127 | | 2/19/13 | <48 | <14 | <15 | <12 | <15 | <14 | <13 | <30 | <23 | | | | | 2327+/-99 | | 2/26/13 | <48 | <13 | <16 | <13 | <15 | <14 | <15 | <31 | <24 | | | | <222 | | | 3/5/13 | <43 | <14 | <15 | <13 | <14 | <14 | <14 | <32 | <22 | | | | | 75+/-94 | | 3/12/13 | <45 | <10 | <12 | <11 | <13 | <12 | <12 | <22 | <19 | | | | | 1877+/-91 | | 3/18/13 | <35 | <9 | <11 | <11 | <12 | <10 | <12 | <23 | <20 | | | | | 2628+/-108 | | 3/26/13 | <32 | <10 | <12 | <10 | <13 | <10 | <11 | <23 | <19 | | | | | 75+/-95 | D = sample analyzed by DCLS ^{*}Note: Release was in progress at time of sampling. Verified via telephone with Surry Power Station personnel. A copy of the Station Release Permit was obtained and is on record. ^{**}Note: Release was in progress at time of sampling and follow up sample indicated 901pCi/L +/- 60 pCi/L and a copy of the Station Release Permit was obtained and is on record. #### **SURFACE WATER** January 1, 2013 through March 31, 2013 #### Surry Power Station – Scotland Wharf / baseline - W-79 Gamma Activity – pCi/liter | Date | Ba-
140 | Cs-
134 | Cs-
137 | Co-58 | Co-
60 | I-
131 | Mn-
54 | Zn-
65 | Zr/N
b 95 | Gros
s
Beta | +/- | BS | H3
MDA | H3
activity | |-------------|------------|------------|------------|-------|-----------|-----------|-----------|-----------|--------------|-------------------|------|----|-----------|----------------| | D
1/2/13 | <18 | <6 | <6 | <7 | <5 | <42 | <6 | <13 | <12 | 63.9 | 34.4 | | | | | 1/2/13 | <47 | <13 | <15 | <13 | <14 | <14 | <14 | <30 | <25 | | | | | 150+/-30 | | 1/8/13 | <50 | <14 | <16 | <14 | <14 | <15 | <14 | <31 | <22 | | | | | 300+/-42 | | 1/15/13 | <48 | <15 | <15 | <13 | <15 | <15 | <14 | <31 | <24 | | | | | 526+/-52 | | 1/22/13 | <51 | <13 | <15 | <14 | <15 | <15 | <13 | <32 | <23 | | | | | 976+/-67 | | 1/29/13 | <52 | <12 | <14 | <13 | <15 | <15 | <14 | <35 | <22 | | | | | 1051+/-67 | | 2/5/13 | <49 | <13 | <15 | <13 | <15 | <15 | <14 | <31 | <24 | | | | | 526+/-43 | | 2/12/13 | <46 | <12 | <15 | <13 | <14 | <14 | <14 | <31 | <23 | | | | | 1727+/-85 | | 2/19/13 | <50 | <14 | <15 | <12 | <17 | <16 | <13 | <31 | <25 | | | | | 1126+/-73 | | 2/25/13 | <53 | <13 | <16 | <13 | <15 | <15 | <14 | <33 | <24 | | | | | 75+/-95 | | 3/5/13 | <49 | <14 | <16 | <13 | <15 | <14 | <14 | <32 | <24 | | | | | 901+/-67 | | 3/12/13 | <43 | <10 | <11 | <11 | <13 | <12 | <12 | <26 | <20 | | | | | 1727+/-85 | | 3/18/13 | <37 | <9 | <12 | <11 | <12 | <10 | <10 | <24 | <18 | | | | | 1502+/-79 | | 3/26/13 | <33 | <8 | <12 | <11 | <13 | <11 | <11 | <23 | <21 | | | | | 150+/-30 | D = sample analyzed by DCLS #### **SURFACE WATER** January 1, 2013 through March 31, 2013 #### North Anna Power Station – Discharge Canal - W-33 Gamma Activity – pCi/liter | Date | Ba-
140 | Cs-
134 | Cs-
137 | Co-58 | Co-
60 | I-
131 | Mn-
54 | Zn-
65 | Zr/N
b 95 | Gros
s
Beta | +/- | BS | H3
MDA | H3
activity | |-------------|------------|------------|------------|-------|-----------|-----------|-----------|-----------|--------------|-------------------|-----|----|-----------|-----------------| | D
1/2/13 | <8 | <5 | <6 | <6 | <6 | <11 | <5 | <12 | <10 | 2.7 | 0.8 | | | | | 1/2/13 | <52 | <14 | <15 | <12 | <16 | <17 | <13 | <30 | <23 | | | | | 3529+/-127 | | 1/7/13 | <47 | <13 | <15 | <12 | <14 | <16 | <14 | <33 | <23 | | | | | 3153+/-120 | | 1/14/13 | <52 | <15 | <16 | <13 | <17 | <17 | <15 | <34 | <25 | | | | | 3228+/-119 | | 1/22/13 | <48 | <14 | <14 | <13 | <14 | <14 | <13 | <32 | <24 | | | | | 3904+/-134 | | 1/28/13 | <49 | <12 | <14 | <14 | <15 | <17 | <13 | <31 | <24 | | | | | 3829+/-134 | | 2/4/13 | <51 | <13 | <15 | <13 | <15 | <16 | <14 | <29 | <24 | | | | | 3529+/-127 | | 2/11/13 | <48 | <13 | <14 | <13 | <14 | <14 | <12 | <32 | <22 | | | | | 2778+/-116 | | 2/19/13 | <51 | <13 | <14 | <12 | <15 | <16 | <14 | <29 | <20 | | | | | 3904+/-134 | | 2/26/13 | <49 | <14 | <16 | <14 | <15 | <15 | <15 | <35 | <24 | | | | | 5405+/-159 | | 3/5/13 | <50 | <13 | <16 | <13 | <13 | <15 | <14 | <30 | <22
 | | | | 4279+/-140 | | 3/12/13 | <43 | <9 | <12 | <11 | <12 | <13 | <12 | <22 | <20 | | | | | 3754+/-132 | | 3/18/13 | <37 | <10 | <12 | <11 | <13 | <10 | <10 | <25 | <19 | | | | | 4129+/-137 | | 3/26/13 | <36 | <10 | <11 | <11 | <11 | <11 | <12 | <27 | <19 | | | | | 14715+/-
261 | ^{*}A separate follow up sample was created and had results of 11111pCi/L +/- 232pCi/L. NAPS personnel were contacted and verified a release was in progress. D = sample analyzed by DCLS #### **SURFACE WATER** January 1, 2013 through March 31, 2013 #### North Anna River - W-27 / baseline Gamma Activity - pCi/liter | Date | Ba-
140 | Cs-
134 | Cs-
137 | Co-
58 | Co-
60 | I-131 | Mn-
54 | Zn-
65 | Zr/N
b 95 | Gros
s
Beta | +/- | BS | H3
MDA | H3
activity | |-------------|------------|------------|------------|-----------|-----------|-------|-----------|-----------|--------------|-------------------|-----|----|-----------|----------------| | D
1/2/13 | <17 | <5 | <6 | <6 | <6 | <33 | <6 | <12 | <12 | 4.3 | 3.2 | | | | | 1/2/13 | <52 | <13 | <15 | <13 | <12 | <16 | <14 | <30 | <21 | | | | | 976+/-67 | | 1/7/13 | <50 | <15 | <16 | <12 | <14 | <16 | <13 | <33 | <23 | | | | | 375+/-42 | | 1/14/13 | <51 | <14 | <16 | <14 | <16 | <15 | <15 | <38 | <24 | | | | | 826+/-60 | | 1/22/13 | <48 | <13 | <13 | <13 | <15 | <15 | <13 | <31 | <22 | | | | | 1201+/-73 | | 1/28/13 | <54 | <12 | <14 | <14 | <15 | <14 | <14 | <29 | <24 | | | | <220 | | | 2/4/13 | <47 | <14 | <15 | <13 | <17 | <15 | <13 | <32 | <22 | | | | | 121+/-52 | | 2/11/13 | <48 | <13 | <15 | <13 | <14 | <16 | <14 | <33 | <22 | | | | | 75+/-95 | | 2/19/13 | <51 | <14 | <15 | <13 | <14 | <16 | <14 | <34 | <21 | | | | | 2102+/-95 | | 2/25/13 | <51 | <15 | <16 | <13 | <16 | <15 | <14 | <34 | <24 | | | | | 2252+/-100 | | 3/5/13 | <48 | <14 | <14 | <13 | <13 | <15 | <14 | <32 | <22 | | | | <220 | | | 3/12/13 | <47 | <9 | <10 | <12 | <13 | <16 | <12 | <25 | <22 | | | | <223 | | | 3/18/13 | <36 | <9 | <13 | <11 | <13 | <10 | <11 | <22 | <19 | | | | <209 | | | 3/26/13 | <41 | <10 | <12 | <11 | <13 | <10 | <12 | <23 | <19 | | | | | 1126+/-67 | D = Sample analyzed by DCLS #### **VEGETATION** January 1, 2013 through March 31, 2013 | Location | Date
collected | Туре | Isotope | Results
pCi/Gram (wet
weight) | |---|-------------------|------|---------------------------|-------------------------------------| | Surry County
Private garden
V-96B | 02/05/2013 | | I-131
Cs-134
Cs-137 | <0.04
<0.02
<0.02 | | Louisa County
Private Garden
V98B | 02/04/2013 | | I-131
Cs-134
Cs-137 | <0.03
<0.02
<0.02 | # COMMONWEALTH OF VIRGINIA # DEPARTMENT OF HEALTH #### DIVISION OF RADIOLOGICAL HEALTH 109 Governor Street, Room 730 Richmond, Virginia 23218-2448 Office (804) 864-8150 Fax (804) 864-8165 # **BABCOCK & WILCOX** #### **Babcock & Wilcox** #### AIR PARTICULATE COMPOSITE SAMPLES January 1, 2013 through March 31, 2013 #### FIRST QUARTER REPORT 2013 | Easte | ern Site | Bound | lary - Bali | l field | A-10 | 01 | |-----------------|----------|-------|-------------|---------|----------|-------| | Quarter | Start | Date | 04 | | S Beta A | • | | <u> </u> | Gtart | | Stop | р | Ci/mete | rs | | -1 | | | | | | | | 1 st | 1/9/13 | - | 1/15/13 | 0.001 | +/- | 0.001 | #### SOIL January 1, 2013 through March 31, 2013 | | | | | Alpha Activity | |--|----------|------------------|------|----------------| | Location | Date | Distance
& | | | | | | Direction | Type | pCi/gram | | Eastern Site Boundary Ball field S-101 | Annually | Site
Boundary | Soil | 0.0+/-0.0 | | James River
Shoreline
Near Six Mile
Bridge
"control"
S-102a | Annually | 1.5 miles
SW | Soil | 0.0+/-0.0 | Alpha * - Uranium separation followed by alpha counting ### **Virginia Department of Health** ### **Babcock & Wilcox** ### **SURFACE WATER** January 1, 2013 through March 31, 2013 ### FIRST QUARTER REPORT 2013 | Location | Date | Distance & Direction | pCi/gram | |--|----------|---------------------------------|-----------| | James River Shoreline Near Ball field at eastern site boundary W-101 | Annually | Approx. 3 miles downstream | 0.0+/-0.0 | | James River Shoreline
Near Six Mile Bridge
"control"
W-102 | Annually | Approx 1.5
Miles
upstream | 0.0+/-0.0 | ### **VEGETATION** January 1, 2013 through March 31, 2013 ### FIRST QUARTER REPORT 2013 | Location | Date | Туре | Distance &
Direction | Alpha Activity
pCi/gram | | |--|----------|------------|----------------------------|----------------------------|--| | Eastern site boundary
Ball field
V-101 | Annually | Vegetation | Approx. 3 miles downstream | 0.0+/-0.0 | | | James River
Shoreline off Rt. 460
"control"
V-102 | Annually | Vegetation | Approx 4.5
Miles
SW | 0.0+/-0.0 | | Alpha * - Uranium separation followed by alpha counting ### COMMONWEALTH OF VIRGINIA ### DEPARTMENT OF HEALTH ### DIVISION OF RADIOLOGICAL HEALTH 109 Governor Street, Room 730 Richmond, Virginia 23218-2448 Office (804) 864-8150 Fax (804) 864-8165 # APPENDIX I # LOWER LIMITS OF DETECTION "LLD" ### LOWER LIMITS OF DETECTION "I I D" Definition: "Lower Limit of Detection" – The smallest amount, or concentration, of a radioactive or nonradioactive element that can be reliably detected in a sample. All radioactive measurements for samples are reported with an uncertainty. The uncertainty arises for a number of reasons including imperfections in the apparatus or procedure, human error, and counting uncertainty. The counting uncertainty arises because radioactive decay is a random process. This means that if one counts the radioactive decay of a sample several times, each for a fixed time, one will find that the measured number of decays varies randomly. However, these random answers all cluster near an average value. It is usually assumed that the counting uncertainty is the dominant uncertainty. The uncertainties that are reported are the counting uncertainties only. The interpretation of this is that we are 95% confident that the true concentration in the sample lies somewhere between the measured concentration minus the counting uncertainty and the measured concentration plus the counting uncertainty. One consequence of the uncertainties in a measurement of radioactivity is that it is not possible to determine a zero concentration of a radioisotope. Rather, when the uncertainty is such that one cannot distinguish between the sample and background counting rates, we report that the sample radioactivity is less than some concentration. This minimum concentration is termed the Lower Limit of Detection (LLD). Practical sample size, counting time, and background radiation all combine to determine the LLD. The LLD for most radioisotopes is at least several orders of magnitude (factors of ten) less than the standards for a level of a concern that has been set by the state or federal government. # CONDITIONS Consolidated Laboratories LLD values apply to samples analyzed immediately after collection with no decay corrections used in the calculations. Decay corrections normally required during sample processing may result in significant increases in the LLD's for the short-lived isotopes. Gamma isotopic analysis is performed with a 4" X 4" Sodium Iodide (TI) detector and a High Purity Germanium Detector. Gross alpha, beta, Sr-89, and Sr-90 LLD's were based on variable averages normally encountered in sample processing. The LLD may vary from sample to sample depending on self-absorption corrections, counting efficiency, background changes, counting time, and recovery yields. Fish values will depend on the wet to ash weight ratio of the collected sample. The lower limits of detection for all analysis were calculated using the methods found on the following pages: # LOWER LIMITS OF DETECTION (LLD's) FOR GAMMA COUNTING Consolidated Laboratories For solids such as Silt, Vegetation, Fish etc., as provided by HPGE Detector – 1000 minute count time Required Sample Size: 1 Kilogram NOMINAL LLD's for selected isotopes are given below. Actual LLD's are determined at the time of analysis, and vary with decay time, background radiation, sample size, etc. | Isotope | LLD, pCi/Kilogram | |-----------|-------------------| | Cs-134 | 5 | | Cs-137 | 6 | | Co-58 | 5 | | Co-60 | 5 | | I-131 | 7 | | Ru/Rh-106 | 50 | | Zn-65 | 12 | | Zr-95 | 10 | | Ba/La-140 | 8 | | Ag-110m | 10 | | Mn-54 | 6 | | Fe-59 | 11 | Canberra's Spectran-F Software calculates LLD using the following relationships: $$LLD = \qquad \qquad LD \left(\frac{e^{(.693*Td/T\Box)}}{(T)(Y)(e)(V)(0.037)} \right)$$ $\begin{array}{cccc} \text{Where:} & & \text{Td} & = \text{Decay Time} \\ & & \text{T} & = \text{Half-Life} \\ & & \text{T} & = \text{Count Time} \\ \end{array}$ Y = Yield of the gamma ray in question E = Detector efficiency at the energy of gamma ray in question V = Sample size 0.037 = Conversion factor: gammas/second to picocuries and: $LD = k^2 = (2)LC$ Where: LC is the weakest signal the instrument can detect as a peak. and: k is a constant which depends on the desired confidence limit for the result. (At the 95% confidence level, k= 1.645.) ## LOWER LIMITS OF DETECTION (LLD's) FOR GAMMA COUNTING Consolidated Laboratories For liquids such as Water, Milk, etc, as provided by HPGE detector - 1000 minute count time Required Sample Size: 3.5 Liters NOMINAL LLD's for selected isotopes are given below. Actual LLD's are determined at the time of analysis, and vary with decay time, background radiation, sample size, etc. | Isotope | LLD, pCi/Liter | |-----------|----------------| | Cs-134 | 7.3 | | Cs-137 | 7.6 | | Co-58 | 7.2 | | Co-60 | 12.0 | | I-131 | 7.9 | | Zn-65 | 21.0 | | Zr-95 | 15.0 | | Ba/La-140 |
10.0 | | Mn-54 | 7.8 | | Fe-59 | 19.0 | Canberra's GAMMA-M Software calculates LLD using the following relationships: $$LLD = \qquad \qquad LD \left(\frac{e^{(.693^*Td/T_{\square})}}{(T)(Y)(e)(V)(0.037)} \right)$$ Where: Td = Decay TimeT = Half-Life T = Count Time Y = Yield of the gamma ray in question E = Detector efficiency at the energy of gamma ray in question V = Sample size 0.037 = Conversion factor: gammas/second to picocuries and: $LD = k^2 = (2)LC$ Where: LC is the weakest signal the instrument can detect as a peak. and: k is a constant which depends on the desired confidence limit for the result. (At the 95% confidence level, k= 1.645.) # LOWER LIMITS OF DETECTION (LLD's) FOR GAMMA COUNTING VDH-DRH Mobile Incident Command Vehicle Charcoal Canister provided by HPGE detector - 100 minute count time Required Sample Size: 300m³ Actual LLD is determined at the time of analysis and varies with decay time, background radiation, sample size, etc. | Isotope | LLD, pCi/m ³ | |----------------------------|-------------------------| | I-131 in Charcoal Canister | 0.01 | Canberra's Gamma-M Software calculates LLD using the following relationships: LLD= $$4.65 \left(\frac{(R_b/T_s)^{1/2}}{(Y)(e)(V)(d)(2.22)} \right)$$ Where: $R_b =$ Background rate (CPM) T_s= Sample Count Time Y= Chemical Yield (Gamma ray abundance for I-131 @ 364KeV) e= Detector efficiency = 23.9% V= Sample size d= Decay Correction Factor 2.22= Conversion factor: counts/minute to picocuries # LOWER LIMITS OF DETECTION (LLD's) FOR BETA COUNTING Consolidated Laboratories For: Milk and Water (Radiochemical Analysis). | Matrix | LLD | Weight or Volume Required | |----------------|----------------|---------------------------| | Sr-89 | 4.00 pCi/Liter | 1000 ml | | Sr-90 | 1.00 pCi/Liter | 1000 ml | | I-131 in Water | 0.34 pCi/Liter | 1000 ml | | I-131 in Milk | 0.36 pCi/Liter | 1000 ml | LLD= $$4.65 \left(\frac{\sqrt{p(R_b/T_s)}}{(Y)(e)(V)(d)(2.22)} \right)$$ Where: R_b = Background rate (CPM) T_s = Sample Count Time T_s = Sample Count Time Y= Chemical Yield e= Detector efficiency V= Sample size d= Decay Correction Factor 2.22= Conversion factor: counts/minute to picocuries 4.65= 95% Confidence Factor ## LOWER LIMITS OF DETECTION (LLD's) FOR GROSS BETA COUNTING # Consolidated Laboratories (DCLS) & VDH-DRH Mobile Incident Command Laboratory (MICL) For: Air Particulate, Surface/Saline Water, Silt/Soil and Fish. | Matrix | LLD | Weight or Volume Required | |------------------------|----------------|---------------------------| | Air Particulate (MICL) | 0.003 pCi/m3 | 300 m3 | | Surface Water (DCLS) | 34.7 pCi/L | 10 ml | | Saline Water (DCLS) | 40.8 pCi/Liter | 10 ml | | Silt/Soil (DCLS) | 5.7 pCi/gram | 100 mg | | Fish (DCLS) | 0.046 pCi/gram | 1000 grams | LLD= 4.65 $$\left(\frac{(\sqrt{R_b/T_s})}{(Y)(e)(V)(d)(2.22)}\right)$$ Where: $R_b =$ Background rate (CPM) Ts=Sample Count TimeY=Chemical Yielde=Detector efficiencyV=Sample size d= Decay Correction Factor 2.22= Conversion factor counts per minute to picocuries 4.65= 95% Confidence Factor # LOWER LIMITS OF DETECTION (LLD's) FOR GROSS ALPHA COUNTING # Consolidated Laboratories (DCLS) & VDH-DRH Mobile Incident Command Laboratory (MICL) For: Air Particulate, Surface/Saline Water, and Silt/Soil. | Matrix | LLD | Weight or Volume Required | |------------------------|--------------------------|---------------------------| | Air Particulate (MICL) | 0.001 pCi/m ³ | 286 m ³ | | Surface Water (DCLS) | 45.0 pCi/liter | 10 ml | | Saline Water (DCLS) | 45.0 pCi/liter | 10 ml | | Silt/Soil (DCLS) | 11.0 pCi/gram | 100 mg | LLD= 4.65 $$\frac{(2.71/T_s) + (\sqrt{(R_b/T_s)})}{(Y)(e)(V)(d)(2.22)}$$ | Where: | $R_b=$ | Background rate (CPM) | |--------|---------|--| | | $T_s =$ | Sample Count Time | | | Y= | Chemical Yield (Gamma ray abundance for I-131 @ 634 KeV) | | | e= | Detector efficiency | | | V= | Sample size | | | d= | Decay Correction Factor | | | 2.22= | Conversion factor: counts/minute to picocuries | | | 4.65= | 95% Confidence Factor | | | 2.71= | Conversion factor used to compensate for low backgrounds encountered in Alpha counting | # LOWER LIMITS OF DETECTION (LLD's) FOR ALPHA COUNTING Consolidated Laboratories For: Water, Vegetation, Silt and Soil (Uranium Radiochemical Analysis). | <u>Matrix</u> | LLD | Weight or Volume Required | |---------------|----------------|---------------------------| | Water | 0.20 pCi/Liter | 1000 ml | | Vegetation | 0.02 pCi/gram | 1000 grams | | Silt | 0.02 pCi/gram | 1000 grams | | Soil | 0.02 pCi/gram | 1000 grams | | LLD= | 4.65 ((2.71 (Y)) | $\frac{(T_s) + (\sqrt{(R_b/T_s)}.)}{(V)(d)(2.22)}$ | |--------|--|--| | Where: | $R_b = T_s = Y = e = V = d = 2.22 = 4.65 = 2.71 =$ | Background rate (CPM) Sample Count Time Chemical Yield (Gamma ray abundance for I-131 @ 634 KeV) Detector efficiency Sample size Decay Correction Factor Conversion factor: counts/minute to picocuries 95% Confidence Factor Conversion factor used to compensate for low backgrounds encountered in Alpha counting | # LOWER LIMITS OF DETECTION (LLD's) FOR ALPHA COUNTING Consolidated Laboratories For: Air Particulate and Waste Water (Fluorometric Uranium Analysis). | Matrix | LLD | Weight or Volume Required | |-----------------|-----------------|---------------------------| | Air Particulate | 2.00 E-09 ug/ml | 1440 m ³ | | Waste Water | 0.04 ug/Liter | 1000 ml | LLD= 4.65 $$\frac{(2.71/T_s) + (\sqrt{(R_b/T_s)})}{(Y)(e)(V)(d)(2.22)}$$ | Where: | $R_b=$ | Background rate (CPM) | |--------|---------|--| | | $T_s =$ | Sample Count Time | | | Υ= | Chemical Yield (Gamma ray abundance for I-131 @ 634 KeV) | | | e= | Detector efficiency | | | V= | Sample size | | | d= | Decay Correction Factor | | | 2.22= | Conversion factor: counts/minute to picocuries | | | 4.65= | 95% Confidence Factor | | | 2.71= | Conversion factor used to compensate for low backgrounds encountered in Alpha counting | # **VDH-DRH Mobile Incident Command Laboratory (MICL)** For: Surface Water Minimum Required Sample Volume: 50 ml Sample Aliquot = 6 ml LLD in pCi/L = $\frac{4.66(R_b/T)^{1/2}}{(2.22)(V)(E)}$ Where: $R_b =$ Background rate (CPM) T= Background Counting Time = 60 minutes E= Counter Efficiency = 65% V= Sample Volume or Size 4.66= 95% Confidence Factor LLD= 225 pCi/L # COMMONWEALTH OF VIRGINIA DEPARTMENT OF HEALTH ### DIVISION OF RADIOLOGICAL HEALTH 109 Governor Street, Room 730 Richmond, Virginia 23218-2448 Office (804) 864-8150 Fax (804) 864-8165 # **APPENDIX II** # SAMPLING LOCATIONS ### **Sampling Locations for Surry Nuclear Power Station** Photo courtesy of Dominion Power | LOCATION | TYPE | FREQUENCY | |---|-------------------|-----------| | Milk | | | | M-66 Surry County - W.B. Epps Dairy * | Raw | Quarterly | | <u>Air</u> | | | | A-20 Surry Power Station * | Air Particulate | Weekly | | A-44 Jamestown State Park - Historical Site | Air Particulate | Weekly | | Charcoal Filter | | | | C-20 Surry Power Station * | Release Gas | Weekly | | C-44 Jamestown State Park - Historical Site | Release Gas | Weekly | | <u>Dosimeters</u> | | | | D-20 Surry Power Station * | Gamma in Air | Quarterly | | D-41 Surry Lebanon Baptist Church | Gamma in Air | Quarterly | | D-42 Surry County - Lawnes Creek | Gamma in Air | Quarterly | | D-43 Surry County - Route 628 | Gamma in Air | Quarterly | | D-44 Jamestown State Park - Historical Site | Gamma in Air | Quarterly | | D-45 Newport News - Lee Hall | Gamma in Air | Quarterly | | D-73 Naval Weapons Station - Enlisted Quarters | Gamma in Air | Quarterly | | D-76 Newport News - Fort Eustis * | Gamma in Air | Quarterly | | D-77 Williamsburg - Busch Gardens | Gamma in Air | Quarterly | | D-78 Williamsburg - Williamsburg Airport | Gamma in Air | Quarterly | | D-79 Surry County - Scotland Wharf | Gamma in Air | Quarterly | | D-80 Surry County - Bacon's Castle * | Gamma in Air | Quarterly | | D-81 Surry County – Alliance * | Gamma in Air | Quarterly | | D-82 Surry County - Hog Point * | Gamma in Air | Quarterly | | <u>Silt</u> | | | | S-17 James River - 1/2 Mile Off Discharge Canal | Silt | Annually | | Surface Water | | | | W-19 Surry Discharge Canal * | Surface Water | Weekly | | W-79 James River - Scotland Wharf * | Surface Water | Weekly | | <u>Vegetation</u> | | | | V-96B Surry County - local farms * | Edible Vegetation | Annually | ^{*} Virginia and Virginia Power Duplicate Sampling Sites ### **Sampling Locations for North Anna Nuclear Power Station** Photo courtesy of Dominion Power | LOCATION | TYPE | FREQUENCY | |--|-------------------|-----------| | Milk | | | | M-29 Louisa County - Lakeside Dairy * | Raw | Quarterly | | Air | | | | A-88 Louisa County Route 700 * | Air Particulate | Weekly | | A-86 Louisa County – Bumpass Volunteer Fire | Air Particulate | Weekly | | Ol assess I Filters | | | | Charcoal Filter | D-1 0 | Manalda. | | C-88 Louisa County Route 700 * | Release Gas | Weekly | | C-86 Louisa County – Bumpass Volunteer Fire | Release Gas | Weekly | | <u>Dosimeters</u> | | | | D-35 NAPS * | Gamma in Air | Quarterly | | D-50 Louisa County – Mineral * | Gamma in Air | Quarterly | | D-51 Louisa County - Wares Crossroads * | Gamma in Air | Quarterly | | D-52 Spotsylvania - Good Hope Church * | Gamma in Air | Quarterly | | D-53 Spotsylvania - Route 614 | Gamma in Air | Quarterly | | D-54 Louisa County - Frederick's Hall | Gamma in Air | Quarterly | | D-84 Louisa
County - Route 685 | Gamma in Air | Quarterly | | D-85 Spotsylvania Co Route 713 | Gamma in Air | Quarterly | | D-86 Louisa County – Bumpass Volunteer Fire | Gamma in Air | Quarterly | | D-87 Spotsylvania Co Levy * | Gamma in Air | Quarterly | | D-88 Louisa Co Rt. 700 (near station) * | Gamma in Air | Quarterly | | D-89 Louisa County - Aspen Hill * | Gamma in Air | Quarterly | | Fish | | | | F-24 North Anna Lake - Second Cooling Lagoon | Edible Fish | 2/Year | | <u>Soil</u> | | | | S-24 NAPS Waste Treatment shoreline soil | Soil | Annually | | Surface Water | | | | W-27 North Anna River - Route 522 * | Surface Water | Weekly | | W-33 North Anna Discharge Canal * | Surface Water | Weekly | | <u>Vegetation</u> | | | | V-98C Louisa County – local farmers * | Edible Vegetation | Annually | ^{*} Virginia and Virginia Power Duplicate Sampling Sites ### Sampling Locations - Babcock & Wilcox | SAMPLE | LOCATION | TYPE | FREQUENCY | |----------------------|--|-----------------|-----------| | <u>AIR</u>
A-101 | Eastern Site Boundary
Ballfield | Air Particulate | Quarterly | | SURFACE WATER | | | | | W-101 | James River 3 mi. downstream of plant at eastern site boundary | Surface Water | Annually | | W-102 | James River 1.5 mi. upstream of plant at Six Mile Bridge control | Surface Water | Annually | | SOIL | | | | | S-101 | Eastern Site Boundary
Ballfield
LRAHL Bldg. Off Route | Soil | Annually | | S-102 | 460
5 Miles SW
Control | Soil | Annually | | <u>VEGETATION</u> | | | | | V-101 | Eastern Site Boundary
Ballfield
LRAHL Bldg. Off Route | Grass | Annually | | V-102 | 460
5 Miles SW
Control | Grass | Annually | ### Other Sampling Locations in Virginia | LOCATION | TYPE | FREQUENCY | |---|-----------------|-----------| | Air | | | | A-40 Pocahontas State Park | Air Particulate | Weekly | | Silt | | | | S-15A James River - NNSB - Pier 1 | Silt | Quarterly | | S-16 James River - NNSB- Shipway 11 | Silt | Quarterly | | S-18 Elizabeth River - NNSY - Drydock #8 | Silt | Quarterly | | S-19 Elizabeth River - NNSY - Drydock #4 | Silt | Quarterly | | S-20 Elizabeth River - NNSY - Wet Slip #1 | Silt | Quarterly | | Charcoal Filter | | | | C-40 Pocahontas State Park | Air Particulate | Weekly | | Dosimeters | | | | D-40 Pocahontas State Park | Air Gamma | Quarterly | | Surface Water | | | | W-15 James River - NNSB- Pier 1 | Surface Water | Quarterly | | W-16 James River - NNSB- Shipway 11 | Surface Water | Quarterly | | W-37 Elizabeth River - NNSY - Drydock #8 | Surface Water | Quarterly | | W-38 Elizabeth River - NNSY - Drydock #4 | Surface Water | Quarterly | | W-39 Elizabeth River - NNSY - Wet Slip #1 | Surface Water | Quarterly | # COMMONWEALTH OF VIRGINIA DEPARTMENT OF HEALTH ### DIVISION OF RADIOLOGICAL HEALTH 109 Governor Street, Room 730 Richmond, Virginia 23218-2448 Office (804) 864-8150 Fax (804) 864-8165 # APPENDIX III EMERGENCY PREPAREDNESS ### **EMERGENCY PREPAREDNESS** The Division of Radiological Health (DRH) is one of the lead response agencies for emergencies involving the potential or actual release of radioactive materials. Overall, state level emergency response is described in the <u>Commonwealth of Virginia Radiological Emergency Response Plan (COVRERP)</u>, which is developed and maintained by the Virginia Department of Emergency Management (VDEM) for the Commonwealth of Virginia. In addition to generic guidelines for responding to any major radiological emergency, the response procedures contain segments addressing response to several specific types of radiological incidents – including sections, which provide information needed for response to Licensee and Transportation accidents. Other sections contain background information and response guidance for accidents at fixed nuclear facilities. Plans are also being developed to respond to possible radiological terrorist attacks, which may include detonation of a radiological dispersion device (RDD aka "dirty bomb"), an improvised nuclear device (IND), or a military grade nuclear warhead. When responding to any radiological emergency, the primary tasks of VDH-DRH are to locate, identify, and predict the impact of any radioactive materials released to the environment. Based on the predicted or known impact, VDH then recommends appropriate measures to protect the public. DRH would also be tasked with helping to supervise the cleanup of radiological contamination and ensuring the proper disposal of radioactive waste. A VDH-DRH duty officer maintains 24-hour coverage to provide initial assessment/assistance for local responders and may also initiate the mobilization/deployment of other trained staff to respond to a radiological emergency when needed. Under the provisions of current Federal Emergency Management Agency regulations, the DRH conducts or participates in periodic drills that are designed to provide team training and to test emergency plan and procedures. The scope of these drills ranges from receiving and acknowledging simulated emergency communications to full-scale team deployment. In the latter case, the DRH personnel are presented with problems similar to those that might be encountered during an actual radiological emergency. Federal regulations for commercial nuclear power generating facilities stipulate that a full-scale exercise involving appropriate local government participation and testing all significant response elements must be conducted and evaluated every other year. Because there are two such facilities, Surry and North Anna Nuclear Power Stations, Commonwealth of Virginia agencies will perform exercise activities on a yearly basis, alternating between the sites each year. The VDH, DRH, and VDEM have elected to participate in each exercise as fully as possible.